Shock after immediate TAVI implantation. Do we know what we are dealing with? Case resolution

Shock tras implante inmediato de TAVI. ¿Sabemos a qué nos enfrentamos? Resolución

M. Isabel Barrionuevo Sánchez, a, * Juan G. Córdoba Soriano, b Arsenio Gallardo López, b Juan C. García López, b Miguel J. Corbí Pascual, b and Jesús Jiménez Mazuecos b

a Servicio de Cardiología, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
b Servicio de Cardiología, Hospital Universitario de Albacete, Albacete, Spain

CASE RESOLUTION

Immediate shock after transcatheter aortic valve implantation (TAVI) is a rare complication that requires quick diagnosis and treatment. The causes are alterations of the area adjacent to the implant (aortic regurgitation, aortic annulus complications or ischemia due to occlusion or coronary artery embolism), complications distant from the implant area (perforations associated with the pacemaker or the support guidewire in the left ventricle or mitral apparatus alterations) or vascular complications (in the femoroiliac access or the aorta). All of these complications were discarded in our female patient.

The videos of the case presentation suggested a suspected rare cause for the shock: suicide left ventricle consisting of ventricular collapse that triggers dynamic obstruction [video 1 of the supplementary data]. The intraventricular gradient [figure 1] can generate anterior systolic movement of the mitral valve and severe mitral regurgitation [figure 2]. A catheter was advanced to the apex that confirmed the severe intraventricular dynamic gradient [figure 3].

Targeted therapy with fluid therapy was used to optimize preload followed by IV esmolol, and phenylephrine. Also, the rhythm itself was optimized in order to keep atrioventricular synchrony and extend the diastolic filling period. This made the gradient go away [figure 4] and improved the patient’s hemodynamic situation.

Figure 1. Intraventricular dynamic gradient with late peak (arrow).
Progression was good and sustained in time. The control echocardiography performed at the hospital discharge showed a minimum dynamic gradient without anterior systolic movement of the mitral valve treated with atenolol (25 mg/day).

The chronic increase of ventricular postload due to aortic stenosis can trigger myocardial hypertrophy and intraventricular gradient that are masked by a fixed valvular obstruction. However, after implanting the valve it triggers a series of hemodynamic changes that can unmask this gradient and eventually lead to hemodynamic collapse.

The importance of the case is that in the presence of sudden hypotension, vasopressor drugs are often used. However, they can deteriorate both the intraventricular gradient and hypotension by increasing inotropism; that is why it is essential to be aware of this condition and use beta-blockers.
There are echocardiographic data available on the baseline study to predict the higher risk of developing suicide left ventricle: 1,3 small end-diastolic diameter, hyperdynamic left ventricular ejection fraction, asymmetric hypertrophy (septal predominance) and very high valvular gradients. We should mention that, once the acute phase is over, ventricular hypertrophy decreases within the first month, and in 94% of the patients, the dynamic gradient is solved at the 3-month follow-up. 1

SUPPLEMENTARY DATA

Supplementary data associated with this article can be found in the online version available at https://doi.org/10.24875/RECICE.M20000161.

REFERENCES


Figure 4. Registry of aortic and left ventricular pressures after treatment; gradient resolution.